European Survey of Information Society

 

Home   Structure of ESIS   Background to the ESIS Project   Project Management Contacts   Lead and local Contractors   History of ESIS
Small-world network

Small-world properties are found in many real-world phenomena, including websites with navigation menus, food webs, electric power grids, metabolite processing networks, networks of brain neurons, voter networks, telephone call graphs, and social influence networks. Cultural networks and word co-occurrence networks have also been shown to be small-world networks.
In another example, the famous theory of "six degrees of separation" between people tacitly presumes that the domain of discourse is the set of people alive at any one time. The number of degrees of separation between Albert Einstein and Alexander the Great is almost certainly greater than 30 and this network does not have small-world properties. A similarly constrained network would be the "went to school with" network: if two people went to the same college ten years apart from one another, it is unlikely that they have acquaintances in common amongst the student body.
It is hypothesized by some researchers such as Barabási that the prevalence of small world networks in biological systems may reflect an evolutionary advantage of such an architecture. One possibility is that small-world networks are more robust to perturbations than other network architectures. If this were the case, it would provide an advantage to biological systems that are subject to damage by mutation or viral infection.
By contrast, in a random network, in which all nodes have roughly the same number of connections, deleting a random node is likely to increase the mean-shortest path length slightly but significantly for almost any node deleted. In this sense, random networks are vulnerable to random perturbations, whereas small-world networks are robust. However, small-world networks are vulnerable to targeted attack of hubs, whereas random networks cannot be targeted for catastrophic failure.
Degree–diameter graphs are constructed such that the number of neighbors each vertex in the network has is bounded, while the distance from any given vertex in the network to any other vertex (the diameter of the network) is minimized. Constructing such small-world networks is done as part of the effort to find graphs of order close to the Moore bound.
The small world network model is directly applicable to affinity group theory represented in sociological arguments by William Finnegan. Affinity groups are social movement groups that are small and semi-independent pledged to a larger goal or function. Though largely unaffiliated at the node level, a few members of high connectivity function as connectivity nodes, linking the different groups through networking. This small world model has proven an extremely effective protest organization tactic against police action. Clay Shirky argues that the larger the social network created through small world networking, the more valuable the nodes of high connectivity within the network. The same can be said for the affinity group model, where the few people within each group connected to outside groups allowed for a large amount of mobilization and adaptation. A practical example of this is small world networking through affinity groups that William Finnegan outlines in reference to the 1999 Seattle WTO protests.